GE Security

Building Checkpoints of the Future using Sensor Fusion

Yotam Margalit

Where is Sensor Fusion Going?

SRT Kiosk Concept of Operations

Modalities of Sensor Integration

Value Increases As **Standalone Matures** Into Sensor Fusion

Sensor logic altered by data from other sensors

Data Fusion

Multiplexing

A Generic Example to Explain Sensor Fusion

The "Apple Detection System" (ADS)

• The Purpose:

Find apples in a population of plastic balls, tomatoes, pears, apples, oranges, etc.

The ADS has two orthogonal sensors Sensor A = Image based; uses shape recognition.

Sensor B = Chemical; PH sensor detecting apple acidity level.

Scanners employ
Orthogonal
sensors when they
measure different
characteristics of the
targets in order to
determine the presence of

explosives.

Orthogonal Sensors

Studying Sensor behavior

- Each sensor generates a reading between 0 –10.
- Statistical data was collected, for each sensor individually, to create apples and non-apple population curves.

Sensor A: Image

Sensor B: Chemical

Testing

• Tests were conducted and the performance characteristics of Sensor A and Sensor B have been recorded.

Sensor A: Image

$$Pd = 90\%$$
 $Pfa = 25\%$

Sensor B: Chemical

$$Pd = 90\%$$
 $Pfa = 50\%$

Option 1

Use Sensors Individually and Independently

Sensor A: Image

$$Pd = 90\%$$
 $Pfa = 25\%$

Sensor B: Chemical

$$Pd = 90\%$$
 $Pfa = 50\%$

Option 2

Combine Sensor A and Sensor B with an "AND" Boolean

Option 3

Employ Data Fusion (Example: Bayesian)

Sensor A: Image

Sensor B: Chemical

$$P(Apple \mid S1, S2) =$$

P(S1 | Apple)P(S2 | Apple)P(Apple)

 $P(S1 \mid \text{Apple})P(S2 \mid \text{Apple})P(\text{Apple}) + P(S1 \mid \text{Other})P(S2 \mid \text{Other})P(\text{Other})$

Option 3 (continued)

Employ Data Fusion

ROC curve of data fusion:

Pd = 90% Pfa = 14%

Performance Comparison Table

Method	Pd%	Pfa%
Image Sensor	90	25
Chemical Sensor	90	50
"AND" Boolean	81	12.5
Bayesian Sensor Fusion	90	14

Sensor Fusion - Where is the

Hard water? opagation

- Solve equation for each sensor separately
- Then "feed" the result to the next sensor to include in next steps of sensor fusion
- "DSFP" communications protocol

$$P(B \mid X) = \frac{P(X \mid B)P(B)}{P(X \mid B)P(B) + P(X \mid \overline{B})P(\overline{B})}$$

"Threat Probability Meter"

Implementing Sensor Fusion

GE Security

